A Big Data Framework for Cloud Monitoring

Saeed Zareian
School of Information
Technology
York University
Toronto, Canada

zareian@yorku.ca
Xi Zhang

College of Computer Science

Sichuan University
Chengdu, China

zhangxi@stu.scu.edu.cn

ABSTRACT
Categories and Subject Descriptors

H.4 Information Systems Applications|: Miscellaneous;
D.2.8 [Software Engineering|: Metrics—complezity mea-
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1. INTRODUCTION

With the advent of cloud technologies and the virtualiza-
tion of computation resources, there is an increase in effi-
ciency of developing, delivering and maintaining web soft-
ware. Software providers can reserve, decommission and
repurpose resources on demand and at will with minimal or
no external effect to the application or the end-users. This
flexibility has prompted cloud providers to invest in offering
autonomic cloud management systems. Largely based on
IBM’s MAPE-K concept [4], autonomic management sys-
tems provide the capabilities to constantly monitor and an-
alyze the performance and status of the deployed applica-
tion and its supporting infrastructure and promptly react
to changes that will negatively affect the application’s be-
haviour. For example, an influx in incoming traffic may sat-
urate the virtual machines and result in dropped requests
and high response time.

A key component of any autonomic management system
is monitoring. Monitoring is the module responsible for
gathering all the metrics characterizing the performance and
“health” of the deployed application. Metrics can be gath-
ered on the infrastructure level, including CPU and memory
utilization, network and disk throughput, and on the appli-
cation level, including response time and availability among
others.

Monitoring data indicates signs of big data properties in
the following aspects:
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e Volume: If we monitor dozens of metrics per appli-
cation and we sample every few seconds or every few
minutes, within an hour we may have generated a few
gigabytes of data only for a single application. The
rate and amount of data generated implies that the
monitoring system should have high throughput and
data storage capabilities to handle this data.

e Velocity: Apart from the rate with which monitoring
data is generated, it is also imperative that this data
is analyzed as fast as possible, so that the system can
efficiently react to any negative changes. The whole
concept of cloud adaptation is based on the fact that a
system can reengineer its topology as fast as changes
occur.

e Variety: With a number of monitoring agents, de-
ployed on different levels and measuring on different
rates, it is natural to have various formats and sizes of
data samples. All these have to be synchronized and
aggregated, so that they become available for analysis.

e Veracity: Accuracy and robustness of monitoring data
is crucial in the success of an autonomic management
system. False, inaccurate or badly-timed monitoring
data may result in wrong adaptive actions and by ex-
tension in additional and unforeseen costs and lower
software performance.

Given these properties, we propose our own monitoring
component for autonomic cloud management systems. Our
solution makes three distinct and novel contributions:

1. Use of big data technologies: We employ big data
solutions to address the aforementioned challenges caused
by the volume and velocity of monitoring data. More
specifically, we use HBase to store the data, which is
partitioned in a cluster of virtual data servers for effi-
cient storage, faster retrieval and data integrity. Ad-
ditionally, HBase is tightly coupled with highly effi-
cient big data analytics including Hadoop and Apache
Spark.

2. Extendible, pluggable and layered architecture:
The component consists of various layers responsible



for measuring, aggregation, scheduling, storing and re-
trieving monitoring data. Every layer can be easily re-
placed by different technologies, since they are based
on RESTful APIs for lightweight communication and
decoupling. Moreover, its pluggable architecture al-
lows for connecting various monitoring agents respon-
sible for specific metrics or for different levels, includ-
ing VM or application.

3. BigQueue: Because of the potentially large num-
ber of measuring agents and their different monitoring
rate, their write requests to HBase needs to be or-
chestrated and synchronized. If all agents issued write
requests independently, we would have too many si-
multaneous open connections to the database, which
could cause big performance issues. For this reason,
we introduce the BigQueue component, which serves
as a write buffer; the agents commit their data to the
buffer and after a time or volume threshold, BigQueue
pushes the data from all agents to HBase. This way
we have only one connection to the database.

The monitoring solution has been implemented as a compo-
nent in our own MAPE-K implementation, called K-Feed [16],
which is deployed in the SAVI testbed [10], a research cloud
environment built on top of OpenStack. We conducted a
set of experiments to evaluate the efficiency and general
performance of our solution and of BigQueue, more specif-
ically. Additionally, we identified another potential bottle-
neck in the fact that HBase uses one mater node for multiple
worker nodes. Therefore, we repeated our experiments us-
ing Apache Accumulo®, which uses a multi-master model, as
the data store solution and compared the two deployments.
The rest of the paper is organized as follows. Section 2 re-
views related works on cloud monitoring. Section 3 presents
the proposed monitoring module, along with BigQueue and
its functionality. In Section 4, we discuss the results of our
experiments with HBase and Accumulo on enabling efficient
monitoring. Finally, Section 5 concludes this work.

2. RELATED WORK

The area of this work is a point of interests in both academia
and industry. Therefore, we will present the related works
in two sections to focus well on academic and industrial so-
lutions. Developing autonomic systems and investigating
performance metrics has been the topic for a number of re-
search works. In the SAVI testbed [10], there exists a project
with the goal of monitoring the virtualized resources in the
cloud such as storage and network [6]. In this project,
called MonArch, Lin et al. proposed a new architecture
for providing monitoring as a service (MaaS). This service
is an integration of OpenStacks popular monitoring service,
called Ceilometer, and some custom processes obtained from
Apache Spark. Although in this work the architecture is ex-
tendable by adding new user agents, the main advantage
of our work comparing to this project is its portability in
over different datastores. In this work Cassandra is used as
the datastore but in our paper, we compare different data-
store environments and their performance. Yongdnong et
al. [15], implemented their project to interact with multi-
ple third-party monitoring software and read their output
from their database and store them in MongoDB. In this

"https://accumulo.apache.org/

way, they could merge the data and access them via an ad-
ministrative query using an abstraction layer. Thus, they
used whole deployment of monitoring services and instead
of having their own monitoring component. Carvalho et
al. [2] focused more on the discovery of particular resources
that are shared in the Openstack cloud, called cloud slices,
to find the allocated slices per user and then run monitoring
on them. Therefore, their focus is nor portability and ex-
tendibility of the monitoring service, neither the monitoring
big data ingestion. However, Smit et. al [12] designed a
Monitoring-as-a-service (MaaS) framework called MISURE
to show a proof of concept for leveraging the stream data
processing for watching multiple monitoring sources with
low overhead and high throughput. MISURE also provides
custom endpoint for agents to push their monitoring data
and it uses OpenTSDB as database. OpenTSDB uses HBase
as its backed storage. However, in our work we will intro-
duce a issue when we are receiving high throughput of data
in HBase that is not addressed in this work. Meng et al.
[8] tried to improve their previous work [7] to increase the
efficiency of their MaaS solution. In their first work, they
designed a statistical approach to detect the SLA violation
using a window average of data. Then, in their subsequent
work, they tried to integrate their concepts with cloud analo-
gies. They evaluated their works using different standard
workloads and showed that their solution could keep the
SLA violation unlikely. Therefore, their work does not pro-
pose any architecture or software design for high throughput
of data. Konig et al. [5] focused on real time metric data
and monitoring query processing by defining a workflow to
split the tasks related to query among the monitoring agents
and fetch and combine the results. Therefore, their work
lacks a central databases that is vital for complex monitor-
ing queries. Anand [1], also defined another architecture for
monitoring the cloud VMs. In his work, he installed agents
on the VMs that push samples to a monitoring server; the
performance of this architecture is not examined.

In industry, cloud computing has seen an increase in pos-
itive attention and endorsement from major players in the
technology world over the recent years. Ceilometer [3] is
designed to be a single point of contact for billing soft-
ware to collect and report the OpenStack component re-
sources usage. The main goal of Ceilometer is to be used
by billing software in cloud. Thus, the analytic are as sim-
ple as min, max and sum function and the monitoring pro-
cess performance is O(n) that n is the number of moni-
tored resources. Monasca project [9], whose name is de-
rived from Monitoring-at-Scale, designed to be multi-tenant
and highly scalable compared to Ceilometer. Ceilometer
polling method becomes slow when the number of VMs
increases. This project is more independent from Open-
Stack and Ceilometer and can be deployed as a stand-alone
Monitoring-as-a-Service in various cloud environments. An-
other feature of this open-source project is the anomaly
and metric prediction service. Cloudwatch [11] is another
project by Amazon to monitor applications, services and re-
sources in its Amazon Web Services cloud environment. It
has the same concepts that are discussed in previous sec-
tions. Agents gather the metric samples and store them in
a central database to be accessed by the user or the alarm
service. Nevertheless, it is a health monitor service in Ama-
zon cloud environment and it is not portable to other cloud
platforms.



3. HIGHTHROUGHPUT CLOUD MONITOR-

ING MODULE

The proposed monitoring framework follows a layered ar-
chitecture starting from the measuring agents down to HBase,
our big data storage solution of choice. Figure 1 shows the
overall stack of components in the framework. In the next
sections, we will outline the characteristics of each one of
them starting from the bottom, with particular emphasis
and more details on the novel BigQueue component.

Ceilometer [ Perfmon Yammer Apache MySQL
Plugin Plug Plugin gin Plugin

ring Plugin Manager and Scheduler

<
o
=]

Monitoring Manager
Data Management Layer
Hbase Default Driver

HBase Table

Figure 1: Monitoring framework stack of compo-
nents.

3.1 General Architecture

3.1.1 HBase Table

HBase is a cluster-based distributed database system and
part of the Hadoop software stack [14]. It can integrate very
well with other software systems in the stack such as Pig,
Hive, Mahout, and so on.
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Figure 2: HBase schema.

Since HBase is a NoSQL database, it needs a targeted
and well-specified design for its database schema to store the
data in an effective way. The abstraction of the schema we
designed for our solution is depicted in Figure 2. Each mon-
itoring agent is considered as one column family. Therefore,
for each source of monitoring such as Yammer, Ceilometer or
any other pluggable monitoring services, there will be a new
column family. Given that the Yammer agent is specific to
one application and since we may have multiple applications
on one VM, we can define multiple Yammer column families
with the application id as prefix. Row keys are compound
keys containing the VM’s hostname and the Unix timestamp

of the measurements in each row with the granularity of a
second. Each cell represents the value of each metric sample.
The cell name is the metric name.

3.1.2 HBase Default Driver

We used Cloudera? to deploy the HBase data storage clus-
ter on the SAVI cloud. Libraries provided by the Cloudera
manager are used by the Data Management Layer to con-
nect to the HBase cluster, and then, through the HBase Java
API, it can store and retrieve monitoring data.

3.1.3 Data Management Layer

This layer manages incoming data to HBase and outgoing
data from the storage. Incoming data is managed by the
BigQueue component to guarantee high throughput, as we
will describe next. The layer is also responsible for making
the necessary data transformation so that they can be pro-
vided as input to analytics software. Indicatively, in Apache
Spark, we can directly connect HBase to Spark processing
jobs using its Java resilient distributed dataset (RDD) ab-
straction layer to parallelize the data loading in a fault tol-
erant way.

3.1.4 Monitoring Manager

The Monitoring Manager is the backbone of the architec-
ture as it is responsible for initializing the upper layers in-
cluding the Monitoring Plugin Scheduler and connect them
to the lower layers, such as the Data Management Layer.
When deployed and configured along with the application
to be monitored, the Monitoring Manager receives as input
the cloud topology in terms of number and types of virtual
machines and the software deployed in each VM, including
the application itself, application and database servers, load
balancers and so on.

Given the modular architecture of the framework and the
API-enabled communication between the modules, the Mon-
itoring Manager is independent from the data storage or the
measuring agents. Therefore, regardless of whether these
modules are changed or new ones are added, the Monitor-
ing Manager does not need to change.

3.1.5 Monitoring Plugin Manager and Scheduler

This layer is responsible for organizing and orchestrating
the various measuring plugins. The Plugin Manager receives
the topology and software configuration from the Monitor-
ing Manager and creates a list of the necessary agents to
be deployed in each VM and each application to monitor
machine-related metrics (e.g. Ceilometer and PerfMon) or
application-level metrics (e.g. Yammer). This list is then
passed to the Scheduler along with a default monitoring
rate. Since each agent may be gathering metric samples
at a different rate, then Scheduler needs to be aware of this
information for each individual agent.

The Scheduler uses the Play Framework to set up safe
and non-blocking threads for each plugin instance. In ad-
dition, the Scheduler sets each plugin to run with a small
delay after the previous one so that we don’t have network
blocking. The final schedule of execution of the plugins is
then returned to Plugin Manager.

http://www.cloudera.com/content/www/
en-us/documentation/archive/cdh/4-x/4-3-1/
CDH4-Installation-Guide/cdh4ig_topic_20.html



The Plugin Manager instantiates and deploys all the in-
dividual agents and initializes them according to the prede-
fined schedule. Afterwards, according to the set intervals,
the Plugin Manager queries the agents for their metric sam-
ples, which then passes down to the Monitoring Manager,
so that they are stored in the database.

3.1.6 Monitoring Plugins

Given the amount and variety of resources, like VMs and
software, and metrics that need to be monitored, there is
an increasing need for a number of monitoring agents. The
pluggable nature of the proposed layered architecture allows
for the integration of any number and any type of monitor-
ing agent. However, since the agents cannot be seamlessly
integrated with the framework, plugins are needed to be
implemented first. Plugins can be perceived simply as mid-
dleware that specify an API for a given agent, which is ex-
posed to the Plugin Manager, so that the latter can query
the former for metric samples.

In the context of this work, and for the purpose of our ex-
periments, we have implemented several plugins for a num-
ber of monitoring agents.

e Ceilometer plugin: This plugin uses a RESTful API

to access OpenStack Ceilometer API. It connects through

Keystone, the Openstack authentication service, and
then sends a query to the Ceilometer endpoint URL.
For each VM and each metric, a query is sent to the
service and the results are collected. For collected met-
rics, normalization and conversion are performed to
keep them as metric sample Java objects. The objects
are pushed toward the Data Management Layer (i.e.,
BigQueue).

e Perfmon plugin: Perfmon (performance monitoring)
is utilized to exploit the power of agents based on Sys-
tem Information Gatherer And Reporter (SIGAR) [?]
API deployed in VMs. Each five seconds, the plugin
sends a request via an SSH connection to the installed
agent on each VM in parallel using threads. The re-
sponse is a group of values for the metrics. The plugin
pushes the metric sample objects to the BigQueue.

e Yammer/Dropwizard API plugin: Dropwizard in-
troduces a library to have both JVM-related metrics
and custom metrics. Custom metrics can be, for ex-
ample, servlet execution time or number of web page
hits. The values are represented in a URL endpoint
in JSON format. The values are extracted by this
plugin for each server periodically and pushed to the
BigQueue as metric sample objects.

e Apache Load Balancer plugin: This plugin is in-
herited from the PerfMon plugin, but it also reads the
Apache load balancer statistics page.

e MySQL DB plugin: This plugin is also inherited
from PerfMon plugin, but it is specialized to read the
MySQL-related statistics.

3.2 BigQueue Component

Considering the number of VMs and supporting software
that a cloud application may consist of, along with the num-
ber of metrics each agent needs to monitor per unit of time,

for example every second or every minute, we can easily un-
derstand the potentially high number of requests that the
Monitoring Manager needs to handle and pass to the data
storage system. For example, in the K-feed platform, there
is a need to insert samples for around 150 different metrics
per application and VM every 5 seconds, which is a prede-
fined interval.

There are several challenges pertaining the task of pushing
monitoring to a database.

1. Storing data in traditional and single-node database
systems such as MySQL depends on a single bottle-
neck: server process throughput. Thus, for making
our monitoring component scalable by having multi-
ple database servers, we need to use a cluster-based
solution. This was the original motivation behind us-
ing a distributed solution like HBase.

2. Although HBase is a multi-node storage, it has its
own complexities such as storing on top of HDFS and
also replicating data among the nodes. All connec-
tions from monitoring agents to commit their data are
established through HBase master server. Therefore,
the master node can become another bottleneck for
the storage throughput. This led us to experiment
with a multi-master NoSQL solution like Apache Ac-
cumulo [13] to explore whether such a setting will give
us an improved throughput rate.

3. The default driver for HBase provides Java APIs to in-
teract with the database system. The Cloudera APIs
provide a Java interface that creates a thread and es-
tablishes a TCP connection to insert or delete data
from the database. When it comes to large numbers
of interactions, as in the case of monitoring agents,
making new threads and TCP connections in parallel
may block and slow down the operation. A potential
solution can be to use a queuing system for the data
flow. As a result, the monitoring service can collect
information independently and push the data samples
whenever there is a need for storage. This is the mo-
tivation behind the BigQueue component.

Inputs from various
monitoring jobs

Queue Scheduler

rIIIIIIIIIIJ

Synchronized Queue

Output to Hbase API

Figure 3: BigQueue architecture.

BigQueue facilitates the storage of metrics as depicted
in Figure 3. Monitoring plugins can push metric samples
as Java objects with the corresponding API to the inter-
nal queue. The internal queue used inside the component
is designed to be thread-safe. This means multiple threads



can access the queue without considering the common chal-
lenges in simultaneously accessing the queue, such as over-
writing each other’s data. There are two policies to flush
the queue and send the data out to HBase table. The first
one is a threshold value defining the maximum number of
metric samples to be kept. Any time the number of samples
reaches the threshold value, the scheduler flushes out the
whole queue via one single batch request to HBase. There-
fore, there will be only one request for a large number of
samples. The other policy is the time duration for keeping
the samples. Every minute, the values are sent out to the
HBase cluster to store persistently the data in the database.
This is particularly useful when the system is not that busy,
and the queue data has not reached the threshold value.

4. PERFORMANCE EVALUATION OF DATA

MANAGEMENT LAYER

Due to layered architecture of the monitoring system, each
layer can be replaced or modified with minimum effects on
adjacent layers and virtually no effects on the others. Ini-
tially we setup the monitoring system with an HBase clus-
ter; due to poor performance with default driver, we em-
ployed BigQueue in order to improve the performance of
the data ingestion. As described in section 3.2 the problem
stems from provisioning multiple concurrent connections by
the Master node. As HBase is using a single master ar-
chitecture, we mitigate the problem by implementing the
BigQueue. Here we leveraged the layered architecture and
substituted HBase with Apache Accumulo that is a multi-
master columnar NoSQL datastore. The main intention for
this was to see if BigQueue is still improving the data inges-
tion performance or no longer has a tangible effect. In the
following sections, we compare the performance of default
drivers and using the BigQueue in terms of insert operation
delay for both HBase and Accumulo. Table 1 and 2 describe
the specifications of the HBase and Accumulo clusters as
well as virtual machines respectively.

Table 1: Specifications of HBase and Accumulo clus-
ters.

Cluster Name HBase Accumulo

Gateway Node N/A 1 (large)

Master Node | 1 (xlarge) | 2 (medium)
Data Node 4 (large) 4 (large)

Table 2: Virtual Machines (VM) specifications.

Name xlarge | Large | Medium
vCPU 8 4 2
Disk (GB) 160 80 40
RAM (GB) 16 8 4

4.1 Apache HBase

In this section we investigate the effect of using the BigQueue

component on the performance of inserting data in HBase.
For this purpose, two experiments are designed. First, the
data management layer (i.e., BigQueue) is bypassed, while,
in the second experiment, the data management layer is uti-
lized. The experiment starts from 300 rows per second and

continues until the insertion of 10000 rows per second. In
each iteration, we increase insertion rate by 100 rows per
second.

4.1.1 Storing Monitoring Data via Default Driver

In the first experiment, we measure the performance of
insert operation using default configuration of HBase. As
shown in 4, the data insertion time increases linearly with
the amount of rows that are being inserted. Also, as it can
be seen, the insertion time increases up to 35 seconds to the
maximum.
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Figure 4: Operation delay for insert and the stan-
dard deviation for default driver.

4.1.2 Storing Monitoring Data via BigQueue Com-
ponent

In this experiment, we measure the data insertion delay by
leveraging the BigQueue component. Using the queue idea
and batch processing for ingesting data into HBase master
server, the overhead for making a new TCP connection to
HBase master is reduced and, as a result, as can be seen
in 5, the BigQueue component decreased the loading time
almost 200 times.

Insert Operation Time (ms)
stdDev (ms)

Number of rows to be inserted

stddev_time_big_queue

Figure 5: Operation delay for insert and the stan-
dard deviation using BigQueue.

Figure 5 clearly shows that for almost the same amount of
data, using BigQueue component that provides batch load-
ing makes the process more than 200 times faster. However,
there is another issue revealed by these two experiments;
the growth of data insertion time is inevitable because of



the data size, but its growth is not equal or even close to
the growth of the first experiment. In Figures 4 and 5 we
showed the average value of insert time for three iterations
of the same experiment as well as the standard deviation on
of the insertion time values. The standard deviation shows
that without using BigQueue the insert operation will be
more unstable and the time it takes can be more variable.

4.2 Apache Accumulo

In this section we investigate the effect of leveraging the
BigQueue component on data ingestion performance in Ac-
cumulo. For this purpose, we repeated the two experiments
that we carried out for HBase.

4.2.1 Storing Monitoring Data via Default Driver

As can be seen in Figure 6, Accumulo performance is
much better than HBase under the default configuration and
driver. The insertion delays increases slowly with increasing
the pressure on the datastore step by step. Accumulo as-
signs a batch buffer to each plugin and keeps the connection
alive until it closes explicitly by the client and flushes this
buffer to the storage after a predefined time interval. We
made the Accumulo to persistent the data after each step.
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Figure 6: Operation delay for insert and the stan-
dard deviation for default driver.

4.2.2 Storing Monitoring Data via BigQueue Com-
ponent

In spite of very good performance by Accumulo for con-
current data ingestion, still BigQueue manged to speed up
the process up to 5 times (Figure 7). In this configura-
tion, we used BigQueue and made it to push the data into a
batch buffer in Accumulo after each step and then the batch
flushes the data into storage immediately.
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